QBLOX Mission: enable partners to create quantum processors large enough to be useful

QBLOX Revolutionizing the Control Stack

2

QBLOX Quantum Computing is in its early stages

5 qubits control stack @ IBM Research (2016)

Colossus Mark 2 (1943)

To advance research, we need better tools

5 qubit setup in lab of Leo Dicarlo (Tu Delft, 2019)

QuTech Waveform Generator (2017) 24 channel AWG in 9U rackspace

In 2018, Qblox was founded

Niels Bultink, CEO of Qblox (2019)

Partners and collaborators

>80 team members and many open vacancies

Supporting >80 labs globally

GRADIAN Fully-integrated Qubit Control and Readout

- Fully integrated
- Scalable
- Modular

QBLOX Modularity

Qubit Control

QCM QUBIT CONTROL MODULE 0-400 MHz

> 4 Output channels 5 Vpp

> > 16 Bits 16k Wave memory

4 Digital outputs 1 GS/s Sampling rate

0-400 MHz

QRM QUBIT READOUT MODULE 0-400 MHz

> 2 Output channels / 1 Vpp 2 Input channel / 0.1 - 2 Vpp

> > 12 bits 16k Wave memory

4 Digital outputs 1 GS/s sampling rate

QCM- RF QUBIT CONTROL MODULE 2-18.5 GHz

2 Output channels -40 to +5 dBm

750 MHz analog bandwidth 16 bits

16k wave memory 2 Digital outputs

2-18.5 GHz

QRM-RF QUBIT READOUT MODULE 2-18.5 GHz

1 Output channel / -40 to +5 dBm 1 Input channel / -26 to 0 dBm

750 MHz analog bandwidth 12 bits

16k wave memory 2 Digital outputs

Qubit Readout

Good analog performance is crucial

1. Low spurs (cross-talk)

2. 1/f noise (2 qubit gate fidelity)

3. Ultralow drifts (minimize calibrations)

QBLOX Our technology is compatible with multiple qubit platforms

Superconducting Qubits

Spin-based Qubits

Spins in Diamond

- Single-qubit gates
- 2-qubit gates
- Qubit/ Resonator spect.
- Multiplexed readout

- Tuning barrier potentials
- Fast gate sweeps
- RF-reflectometry
- Charge-sensing (Lockin)
- ESR/EDSR

- Frequency tuning of lasers
- Control AOMs and EOMs
- Direct MW control
- TTL acquisition

QBLOX Qblox Instruments & Quantify

Rabi : QIASM vs Quantify

qcm.sequencer0.sync_en(True) qcm.sequencer0.nco_freq(200e6) qcm.sequencer0.mod_en_awg(True) qrm.sequencer0.sync_en(True) qrm.sequencer0.nco_freq(40e6) qrm.sequencer0.mod_en_awg(True) grm.sequencer0.demod_en_acg(True) prog = """ 0, R0 move ampl_loop: add R0, 50, R0 move 1000, R2 set_awg_gain R0, R0 navg_loop: wait 50000 wait_sync 4 set_mrk 1 play 2,3,160 set_mrk 0 upd param 4 loop R2, @navg_loop jlt R0, 25000, @ampl_loop stop

.....

prepare(qcm.sequencer0, prog)

prog = """

```
0, R0
          move
ampl_loop: move
                  1000, R2
navg_loop: wait_sync 4
          wait
                  160
          play
                1, 1,260
          acquire 1, R0, 1000
          loop
                 R2, @navg loop
                  R0,1,R0
          add
          jlt
                  R0, 25000, @ampl loop
          stop
```

prepare(qrm.sequencer0, prog, acquisitions=acquisitions)

```
sched = Schedule("Rabi experiment")
sched.add_resources([ClockResource("q0.01", 6.02e9)])
for acq_idx, amp in enumerate(np.linspace(0, 1, 500)):
    sched.add(Reset('q0'))
    sched.add(DRAGPulse(G_amp=amp, D_amp=0, phase=0, duration=160e-9, port="q0:mw", clock="q0.01"))
    sched.add(Measure('q0', acq_index=acq_idx))
```

sched.repetitions = 1000

_, ax = sched.plot_circuit_diagram()
ax.set_xlim(-0.5, 9.5)
for t in ax.texts:
 if t.get_position()[0] > 9.5:
 t.set_visible(False)

